The Effect of Membrane Material and Surface Pore Size on the Fouling Properties of Submerged Membranes
نویسندگان
چکیده
We aimed to investigate the relationship between membrane material and the development of membrane fouling in a membrane bioreactor (MBR) using membranes with different pore sizes and hydrophilicities. Batch filtration tests were performed using submerged single hollow fiber membrane ultrafiltration (UF) modules with different polymeric membrane materials including cellulose acetate (CA), polyethersulfone (PES), and polyvinylidene fluoride (PVDF) with activated sludge taken from a municipal wastewater treatment plant. The three UF hollow fiber membranes were prepared by a non-solvent-induced phase separation method and had similar water permeabilities and pore sizes. The results revealed that transmembrane pressure (TMP) increased more sharply for the hydrophobic PVDF membrane than for the hydrophilic CA membrane in batch filtration tests, even when membranes with similar permeabilities and pore sizes were used. PVDF hollow fiber membranes with smaller pores had greater fouling propensity than those with larger pores. In contrast, CA hollow fiber membranes showed good mitigation of membrane fouling regardless of pore size. The results obtained in this study suggest that the surface hydrophilicity and pore size of UF membranes clearly affect the fouling properties in MBR operation when using activated sludge.
منابع مشابه
Correlating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor
The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes wer...
متن کاملStudy on the fouling behavior of HDPE/PE-g-MA/EVA blend membrane fabricated via thermally induced phase separation method
In this study, neat HDPE and HDPE/PE-g-MA/EVA blend membranes were fabricated via thermally induced phase separation (TIPS) method and their fouling behaviors were examined using filtration of BSA protein. Membranes were characterized using FESEM, AFM, ATR-FTIR analyses and porosity measurement. Fouling behavior of membranes was analyzed using the resistance-in-series (RIS), classic and combine...
متن کاملFouling Mechanism Study of Nanoporous Membrane by Ultrafitration of Whey Proteins
One of the barriers during whey filtration using UF membrane is the fouling phenomenon of the membrane, which is caused by whey proteins. In this work, the UF membranes were prepared using polysufone (PSf), dimethyl formamide (DMF), 1 wt.% poly vinyl pyrrolidone (PVP) and different concentrations of LiCl via phase inversion induced by immersion precipitation. The prepared membranes were charact...
متن کاملPreparation and Characterization of CA−PEG−TiO2 Membranes: Effect of PEG and TiO2 on Morphology, Flux and Fouling Performance
Modified cellulose acetate (CA) membranes were prepared by dissolving the polymers in a mixture of acetone (AC) and N, N dimethylacetamide (DMAc) (70:30) solvent and deionized (DI) water was used in the coagulation bath. The introduction of polyethylene glycol (PEG) additive and TiO2 nanoparticles (NPs) into the casting solution has changed the structures of the resulting membranes during the p...
متن کاملEmbedding neat and carboxylated nanodiamonds into polypropylene membranes to enhance antifouling properties
The aim of the present work is to enhance the antifouling properties of polypropylene (PP) membrane based on hydrophilicity improvement. Different contents of neat and modified nanodiamond (0.25, 0.50, 0.75 and 1.00 wt.%) were embedded into PP membranes. Nanodiamond nanoparticles were carboxylated by heat treatment method and the presence of carboxyl functional groups on the surface of nanopart...
متن کامل